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The generalized channel Boussinesq (gcB) two-equation model and the forced channel 
Kortewegae Vries (cKdV) one-equation model previously derived by the authors 
are further analysed and discussed in the present study. The gcB model describes the 
propagation and generation of weakly nonlinear, weakly dispersive and weakly 
forced long water waves in channels of arbitrary shape that may vary both in space 
and time, and the cKdV model is applicable to unidirectional motions of such waves, 
which may be sustained under forcing at  resonance of the system. These two models 
are long-wave approximations of a hierarchy set of section-mean conservation 
equations of mass, momentum and energy, which are exact for inviscid fluids. 
Results of these models are demonstrated with four specific channel shapes, namely 
variable rectangular, triangular, parabolic and semicircular sections, in which case 
solutions are obtained in closed form. In particular, for uniform channels of equal 
mean water depth, different cross-sectional shapes have a leading-order effect only 
on the variations of a K-factor of the coefficient of the term bearing the dispersive 
effects in the model equations. For this case, the uniform-channel analogy theorem 
enunciated here shows that long waves of equal (mean) height in different uniform 
channels of equal mean depth but distinct K-shape factors will propagate with equal 
velocity and with their effective wavelengths appearing K times of that in the 
rectangular channel, for which K = 1. It also shows that the further channel shape 
departs from the rectangular, the greater the value of K .  Based on this observation, 
the solitary and cnoidal waves in a K-shaped channel are compared with experiments 
on wave profiles and wave velocities. Finally, some three-dimensional features of 
these solitary waves are presented for a triangular channel. 

1. Introduction 
This paper is a further extension of the previous studies by Teng (1990) and Teng 

& Wu (1990), in which two theoretical models, namely the generalized channel 
Boussinesq (gcB) model for bidirectional motions and the forced channel Korteweg- 
de Vries (cKdV) model for unidirectional motions were developed to describe 
weakly nonlinear and weakly dispersive long water waves generated and propagating 
in a quasi-one-dimensional variable channel. These models are more general than the 
previous versions in allowing channel boundary variations both in space and time, 
and in admitting moving boundaries as forcing disturbances that can be sustained a t  
resonance of the system for an extended period of time. 

The general subject of nonlinear long waves evolving in a non-uniform medium has 
been a field of considerable activity and development. For uniform channels, Peters 
(1966), Peregrine (1968), Shen (1968, 1969) and Fenton (1973) investigated waves 
travelling in a straight uniform channel with arbitrary cross-section. In studies of the 
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nonlinear evolution of long waves on water of variable depth, a set of evolution 
equations of the Boussinesq class was derived by Peregrine (1967) and by Madsen & 
Mei (1969) independently. The transient procedure of fission of an initial solitary 
wave into a sequence of solitary waves after climbing up a shelf was given in 
numerical results by Madsen & Mei and was supported by Johnson (1973). For 
rectangular channels with variable depth and width, Shuto (1974) obtained a KdV- 
type equation with variable coefficients as a theoretical model. Similar model 
equations were derived by Shen & Zhong (1981) and Cai & Shen (1985) for variable 
triangular and elliptical channels. In analysing the wave conservation properties, 
Miles (1979, 1980) pointed out that Shuto’s model does not conserve mass owing to 
neglect of the reflected waves but it is adiabatically invariant in energy. For this 
category of channel shape, Chang, Melville & Miles (1979) carried out numerical and 
experimental studies on solitary waves travelling in a rectangular channel with a 
linearly varying width but a uniform depth, using Shuto’s equation for numerical 
computation. For studying the run-up of long waves on sloping beaches, the 
Lagrangian description was used by Pederson & Gjevik (1983) to develop a 
Boussinesq-class model. Also in terms of the Lagrangian description, Zelt (1986) and 
Zelt & Raichlen (1990) derived a set of long-wave equations to study wave responses 
to bays and harbours with variable bathymetry and sidewall shape for some simple 
configurations. For wide channels of arbitrary shape, David, Levie & Winternitz 
(1987) introduced a generalized Kadomtsev-Petviashvili (K-P) equation (with 
variable coefficients) as a weakly three-dimensional long-wave model for simulating 
solitary waves in a wide and shallow marine strait. The forced Kadomtsev- 
Petviashvili equation has also been analysed and applied by Mathew & Akylas 
(1990) to study the propagation of weakly nonlinear long water waves along a wide 
(compared with the depth) channel bounded by sloping sidewalls. (Further references 
to the literature may be found in Teng & Wu 1990.) In these studies, channel 
boundaries have varied only in space but not with time. Also, external forcings have 
not been considered. 

The main objectives of our series of studies are (i) to present a set of integral 
conservation laws for a segment of free-surface flow along a channel of arbitrary 
variable shape; (ii) to provide a recapitulation of the two theoretical models adopted 
here for further applications ; (iii) to determine the general features of solitary and 
cnoidal waves propagating along a uniform channel of arbitrary shape; (iv) to 
evaluate the evolution of nonlinear long waves in converging-diverging channels of 
variable depth and width; and (v) to explore the generation of waves by forcing 
excitations sustained at resonance of the system. The first three parts will be 
addressed in the present article. 

The general case under consideration is a class of channels whose width and depth 
are of the same order in dimension, the water depth is small compared with a typical 
length of the prevailing waves, and the channel boundaries may vary gradually along 
the channel and possibly with time to act as an external forcing disturbance. For this 
general case, a set of section-mean equations of motion is presented in $2, which are 
exact for inviscid fluids. From these basic equations a number of integral 
conservation laws are derived for a segment of wave motions bounded by any two 
channel sections. These fundamental conservation properties of nonlinear channel 
waves are valuable for assessing the validity of theoretical models and numerical 
results as well as providing a sound basis for deriving the desired long-wave models. 
In  $3, a summary is given of the derivation of the two theoretical models, the gcB 
for bidirectional long waves and the cKdV for unidirectional long waves being 
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FIQURE 1.  A channel with variable cross-section of area A ( z ,  t )  = A,@)-A, (z ,  t )  +A&, t ) ,  A ,  being 
the unperturbed fixed sectional wetted area, A ,  the wetted area variation due to a moving 
boundary of the channel and A ,  the wetted area variation due to free-surface motion. 

produced and propagating in a variable channel of arbitrary shape. In $4, the effects 
of channel configuration are examined for four specific shapes, i.e. variable 
rectangular, triangular, parabolic, and semicircular cross-sections, for which the 
solutions are obtained in closed form. The results show that variations in channel 
shape only affect the value of a parametric factor, called the shape factor K ,  of the 
coefficient of the term bearing the dispersive effects in the model equations for 
channels of equal mean depth. For uniform channels in particular, an arbitrary 
channel characterized by a specific shape factor K can be uniquely correlated, by a 
proper scaling transformation only involving K ,  with an analogous rectangular 
channel. On this basis we proposed a uniform-channel analogy theorem, by which the 
wave properties in a K-shaped uniform channel are reduced to a calculation of the 
waves in the analogous rectangular channel, a problem which is classical. This 
theorem holds not only for free waves, but also for waves produced by forcing 
disturbances. By applying this theorem, the existence of solitary and cnoidal waves 
travelling in permanent form along a uniform channel of arbitrary shape are 
analysed and discussed in $5 for both the gcB and cKdV models. Comparison 
between theory and experiment on wave profiles and wave velocities are made for 
some representative cases. Finally, three-dimensional features of the wave profile are 
recovered for a solitary wave propagating along a triangular channel. 

2. Channel section-mean equations 
We recapitulate here, as a basis for further applications and discussions, the basic 

theoretical models developed by Teng (1990) and Teng & Wu (1990) for propagation 
and generation of long waves in variable channels of arbitrary shape. A typical water 
channel of the general group under consideration is shown in figure 1. The channel 
is straight, symmetric about its (2, 2)-centreplane, with cross-sections arbitrary in 
shape and with its area gradually varying along the channel and possibly changing 
slowly in time. The width and depth of the channel are supposed to be of the same 
order, and there are no excessively sloped banks. The water in the channel is 
supported from underneath by the bottom at 2 = -h ( z ,  y, t ) ,  with its free surface 
displaced at time t to z = [(z, y ,  t ) ,  and with the free surface extended across the 
channel to the waterline at  y = b(z,  t ) ,  at which the bank may be vertical or 
inclined. 

We consider the class of motion of three-dimensional water waves of arbitrary 
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amplitude and wavenumber, propagating in two horizontal dimensions along a 
channel as prescribed. The water in the channel will be assumed inviscid and 
incompressible, with constant density p .  The effects of surface tension will be 
neglected. 

The motion of the water, with velocity U = (u, v, w) and the pressure p(x, y, z, t ) ,  
satisfies the Euler equations 

v - u = o ,  (1) 

(2) 
d U  1 
- = u,+ u . v u =  --vp, (p, = p+pgz), 
dt P 

(3) 
dC 
dt 

P = P&, Y, t ) ,  2 = a x ,  Y, 0, IyI < b(x, t ) ;  (4) 

(h,+uh*+vh,), 2 = -h(x,y,t); (5) 

ZI = f (b ,+ub , ) ,  y = +b(x,t), (6) 

and the boundary conditions 

w = - = C t + 4 * + ~ C y ,  z=C(x,y,t), IyI <b(x,t); 

dh 
dt 

w=--=- 

where V = (az, a,, aZ) ,  the variable subscripts denoting differentiation, p, is the excess 
pressure, pa the specified ambient surface pressure, and g the constant acceieration 
due to gravity. Condition (6)  applies to any vertical segment (of halfwidth b )  of the 
sidewalls. The free-surface flow will be assumed irrotational, with U = Vq5, where the 
velocity potential $(x, y, z ,  t) satisfies the Laplace equation, 

V2$ = 0, (7)  

and we also have the Bernoulli equation 

a$ P P, - + + V + - + g z  = -. 
at P P 

For our general purpose, it  is of basic interest to first derive a set of one- 
dimensional section-mean equations by integrating (1) and (2) over the wetted cross- 
sectional area of the channel flow, so that the dominant mean wave motion in the x- 
direction can be precisely prescribed. This set of section-mean equations is exact for 
an inviscid and incompressible fluid, without having the motion limited to small 
amplitudes, or to waves being long, or even to flows being irrotational. 

First, we define the section-mean value of any flow quantity f(x, y, z, t )  as 

where A is the wetted cross-sectional area, which, like the free surface, is as yet 
unknown. By applying Reynolds’ transport theorem to the flow in a material volume 
V(t) which a t  time t coincides with a vertical column of water lying between any two 
sections of specified x, it is readily shown (Teng 1990), using the kinematic conditions 
(3), ( 5 )  and (6 ) ,  that  for a smooth flow variablef(x,y,z,t), 
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or 

where u is the x-component of U = (u, v ,  w). 

f = 1,u,v,w and 

we obtain the following section-mean equations, 

By applying this channel-transport theorem to (l), (2) and (8), taking in turn 

f = H = ~ ( u ~ + v 2 + w ~ ) + p g z ,  

A,  + (A@), = 0, 

(Aa), + ( A m ) ,  = --z, 

(11) 

(12) 

(13) 
A 

P 

where ( )6. and ( * )-,, denote the quantity evaluated at z = 5 and z = - h, respectively. 
These five equations give the section-mean conservation laws for mass, horizontal 
and vertical momenta and energy, noting that ( H )  is the sum of the kinetic and 
potential energy density of a water slab of unit thickness in x. These basic equations 
are exact for inviscid fluids, whether or not the flow is irrotational. However, this 
hierarchy set of equations is not closed, there being more unknowns than the number 
of equations. Nevertheless, they provide a set of exact local conservation laws that 
should be of fundamental interest, for example, for assessing the accuracy of 
approximate and numerical solutions. 

A set of integral conservation laws can be derived under the assumptions that (i) 
the channel spans over x E 93 ; (ii) all the resulting integrals are convergent ; and (iii) 
h(x, y, t )  = h,(x, y) -h,(x, y, t), of which the moving disturbance part, h,, is assumed 
integrable over the water planform S ,  ( -  co < x < 00, IyI < b(x, t)) .  Thus upon 
integrating (1) over S (xl < x < x2, IyI < b(x, t)), which is an arbitrary segment of S,, 
we have for the excess mass m within S the conservation law 

_-  dm . A,dx = Q1-Q2, 
dt 

where Q3 = &(x3) ( j  = 1,2), Q(x) = pAa being the discharge across the section at  x. 
For the excess mass centre within the segment S, x,(t) say, defined as 

mx, = p Axdx, I:: 
we obtain the impulse equation 

d 
dt 
-(mx,) = xlQ1-x2Q2+Il 
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I, being the x-component of impulse of the fluid within the volume segment of S. 
Further, for the balance of the x-component of the momentum we have 

which yields for flows that are symmetric about y = 0 the expression 

where n,, = A ( p u u + ~ ) ,  the 2-component of the total sectional momentum flux, 
and the first integral is the contribution from vertical sidewalls, if any, a t  which 
( p e ) b  = pe(z,  z ,  t ) .  

For the vertical component of momentum we have 

where n13 = p A m .  Finally, for the total energy we have from (16) the relation 

where P = A(H+p)u ,  the total sectional energy flux. Here, the first integral may 
prevail should the channel sidewalls be vertical and moving transversely. 

If the flow disturbance has a compact support, i.e. all the physical quantities 
perturbed from the state of rest are assumed to be regular a t  5 = f 00 such that all 
the integrals involving them are convergent, then by letting x1 + - 00, x2 + + co, we 
find that all the above relations hold provided that all of 

Qj, xjQj9 (n11)j, (n13)jr F j + O  (j = 192). (22) 

These integral conservation laws are exact for inviscid fluids. Their physical 
significance is quite evident as the relations appear almost in the classical form of 
mechanics. For instance, by (19), the fluid impulse I, increases over the transport by 
the total momentum flux a t  a rate equal to the longitudinal component of the surface 
pressure acting on the flow boundary, as expected. These relationships are general in 
that they are not limited to motions being small or irrotational, or waves being long, 
or to particular boundary configurations. For some special cases they agree with 
those previously discussed by Wu (1979, 1981), Benjamin & Mahony (1971) and by 
Keulegen & Patterson (1940). 

3. Channel long-wave models 
For channel long waves, we note that the first two equations of the set (12)-( 16) 

are sufficient for determining the two mean-flow variables since the closure can be 
effected by expansion, for long waves, of the field equation (7) for the velocity 
potential q5 and the Bernoulli equation (8). We outline below the derivation of the 
two theoretical models given by Teng (1990), Teng & Wu (1990) for modelling long 
waves in variable channels, with major steps delineated to make this paper self- 
contained. 
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The total wetted cross-sectional area in general consists of three parts : 

A(x, t )  = A,(x) -A,(X, t )  + A,(X, t )  Ah(z, t )  + Ag(X, t ) ,  (23) 

where A, is the unperturbed cross-sectional wetted area, A,  the wetted area variation 
due to a moving boundary of the channel or a moving submerged body as a forcing 
function, and A ,  is the wetted area variation due to wave motion at  the free surface, 
which can be written A ,  = 2bf, where 

is the ‘sectional free-surface mean’ of ( * ) .  Thus (12) can be written as 

(2b&f, + [ ( A h  + 2bf) alz = - ( A h )  t ’  (25) 

This section-mean continuity equation, which is exact, gives a relation between f and 
ti in terms of b and Ah as functions of x and t .  The closure of the system is 
accomplished by relating the unknown variables uu and in (13) to the original two 
unknowns g and a. This is achieved, to a second-order approximation, by applying 
the following perturbation expansions appropriate for long waves to the Laplace 
equation (7) and the Bernoulli equation (8). 

3.1. The generalized channel Boussinesq model 
With the vertical lengths scaled by a typical constant mean water depth h,, the 
horizontal lengths by a typical wavelength A, time by Alc,,, where c,  = (gh,)i is the 
linear critical wave speed, the flow is found to be characterized by two important 
parameters, 

where a is a typical wave amplitude. The theoretical models that were derived by 
Teng (1990) and Teng & Wu (1990) are of the Boussinesq class of wave motion 
specified by a = O(e2) 4 1, so that the nonlinear effects (scaled by a) and the 
dispersive effects (scaled by s2)  are both well matched with the net inertial effects. 

a = a/h,, E = h,/A, (26) 

In dimensionless form, (7) and (8) become 

and the boundary conditions in the cross-flow plane become 
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where n is the outward unit normal to the boundary curve in the cross-flow 
plane. 

With Ao(x)  = O( l ) ,  A,(z,  t )  and A&x, t )  = O(a)  by assumption, it is clear that 
ti = O(a) by (25), whereas v and ware of O(ae) by (29)-(32) provided that h,, b, = O(a) ,  
h,, b, = O(a) ,  as assumed. However, h,, the section slope of the channel boundary, 
need not be limited to certain bounds, such as for vertical walls. 

In  accordance with the scaling, q5 and 6 assume the following expansions: 

with the velocity components u = q5x, v = q5,/e, w = + J E ,  all scaled by co = (gh,);. 
From this we see that u-ti = O(ae2), w--B= O(ac) ,  w-w = O(ae) ,  and hence 

The last relation for the excess pressure p ,  = p + 2 is valid throughout the depth and 
gives a measure of IC)p,/C)zl = O(as2) for the assumption of the pressure being 
hydrostatic as generally adopted in classical shallow-water long-wave theory. I n  
particular, at the free surface, (36) becomes I( pa + 6) - (pa + f ) I  = O(ae2) ; hence if 
1pa-$.J < O(ae2) ,  then 15-4 = O(aez), indicating that the transverse variations of 6 
from its transverse surface mean is always of higher order than 151, which is of O(a). 

Thus, use of (35) resolves the term rn in (13). For the closure of (25) and (13), i t  
remains to seek an expression for in terms of ti and [. This is accomplished by 
evaluating the difference between the sectional free-surface mean and the section 
mean of the x-gradient of the Bernoulli eqbation, which yields the result 

The term +(x,t) in (37) depends on the solution of q5z(z,y,z,t) which is the second- 
order term in the expansion (33) for q5 and which can be solved explicitly in terms of 
a and f once the specific geometry of the cross-section is given. This ‘cross-flow’ 
boundary-value problem for q5z is prescribed by 

?& = g,, (2  = O), aZ 
( ~ h , + u , h , ) / ( l + h ~ ) ~  ( z  = -h(x,y,t)), 

35 = * ( : i t + u J x )  (y = *i(x,t)) ,  
aY 

where S,  denotes the cross-sectional flow region and u, = This Neumann 
problem for the leading-order cross-flow velocity potential q52 has a unique solution 
(up to an integral constant function of (x, t ) )  since the boundary conditions are easily 
seen to satisfy the solvability condition 

f c 2 d s  = -A(x ,  t )  ulx, 
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C being the boundary curve of S,(x,  t ) .  The solution g52 depends on au, E a(x, t )  (as 
a parameter) in addition to the geometric configuration of the boundary. 

Finally, substituting (35)  and (37)  into (13)  yields with (25) the set 

( 2 b h  + [(Ah + 2bC) alx = - (Ah)t, (43)  

at+aaz+6z+s2$(x, t )  = -pax, (44)  
- 

where $ is given by (38) .  Equation (43)  is exact and (44) has an error of O(as2) 
relative to the leading terms fit and cz. The set of equations (43) and (44) is our 
generalized channel Boussinesq-class two-equation model in the general form which 
admits external forcing disturbances. It is applicable to weakly nonlinear, weakly 
dispersive and weakly forced long waves propagating, possibly in both directions, in 
a channel of arbitrary, non-uniform and varying cross-section. The forcing functions 
can be a submerged topography or a free-surface pressure distribution oscillating and 
moving along the channel. 

3.2. The channel Korteweg-de Vries model 
With additional assumptions that the main waves are unidirectional and the 
external forcing is sustained nearly at  resonance of the system, the Boussinesq two- 
equation model (43) and (44) can be further reduced to become the so-called channel 
Korteweg4e Vries (cKdV) equation. 

With the channel width and the mean water depth decomposed as 

b(x, t )  = b, (z )  - bd(x ,  t ) ,  &(x, t )  = &(x) - i d ( z ,  t ) ,  (45)  

where b,(x) and i o ( x )  = A,(x)/2b0(x) represent the fixed components to which small 
unsteady perturbations b,(x, t )  and &(x, t )  are superposed as forcing functions (taken 
positive if they reduce the flow cross-sectional area and negative otherwise), we 
adopt the multiscale transformation (see Johnson 1973) to give the new independent 
variables 

In this coordinate system, the variations in the linearized wave speed c ( x ) ,  in depth 
Lo@) and in width b,(x) !ecome functions of X only, signifying their slow variation. 
By assuming for f = a, 5, g, b,, h,, A ,  and $ the expansion 

where the sign + (or - )  is for right (or left)-going waves, and that Cl of a right-going 
waves satisfies 

In addition, we have the following relationship between u2 and cl, S2 : 

8 

1 1  1 1  
cu2 = C2 --- c +ihi I6 $, d[----A,, + &a2 -fhk(ln h, b t )x  IE6,  d6. (50)  

4h0 4 bo 
FLM 242 
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Equation (49) is the generalized KdV equation expressed in terms of the stretched 
coordinates. Finally, restoring the original variables [ and u (standing for [ and a) 
in terms of the original coordinates (2, t )  for the laboratory system in which the fluid 
is at  rest at  infinity, we obtain the channel KdV equation as 

2 2b, 
3 1  

cu = [ - - - p + g 2  1 1  $dx---Ad+~,-i(lnhobg)z[ 1 1  [dz, 

4 ho 4bo 5 0  

where the + (or - ) sign holds for the case of the right-going (or left-going) waves and 
x, is some station at  which [, u and all disturbances vanish. 

With q52 and hence $ assumed determined (in terms of u and [), equation (51) then 
provides the channel KdV-type one-equation model in the general form. For various 
special cases, this channel KdV equation agrees with the forced KdV model of Wu 
(1987) and Lee, Pates & Wu (1989) for uniform rectangular channels, and with Shuto 
(1974) for rectangular channels of variable depth and width, without forcing. 

4. Cross-flows for some specific channel shapes 
There are four specific channel shapes for which solutions to the Neumann problem 

of the Poisson equation (39)-(42) can be obtained in closed form, three of which have 
been given by Teng (1990) and Teng & Wu (1990). We cite the three and add here 
the solution for the variable parabolic channel. 

4.1. Variable rectangular channel 
The variable rectangular channel has its sidewalls at 

Y = + b ( z ,  t )  = k [bo(x) -bd(x, t ) ]  

and its bottom at z = -h(x, t )  = -[h,(x)-h,(z, t ) ]  (see figure 2a) .  The fixed depth 
h,(x) and width b,(x) may have small forcing disturbances hd(x , t )  and bd(z,t) 
superposed which move along the bottom and the walls of the channel, respectively, 
keeping the instantaneous channel cross-section everywhere rectangular. 

The corresponding cross-flow problem for q52 has the following description : 

62yy+$2zz  = -uiz(x, t )  (--h(x, t )  < z < 0, < b(x ,  t ) ) ,  
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b(x, t )  
4 

22 1 

where a,(z, t) = 6, = -Dh-2a2 h -  hu,,, (54) 

a&, t )  = tD In b, (55)  

and the undetermined function a&, t)  represents a complementary solution. 
From this #2, we deduce that 

where Q = aD In 6 ,  and we note that the additive term ao(x, t) in (53) for #2 makes no 
contribution to $. Here, the two relations for a, in (54) are equivalent by virtue of 
the solvability condition. With the $(z, t )  determined, (43) and (44) completes the 
gcB model for the case of a rectangular channel. 

For the cKdV model, the above result (56) for $(z,t) further simplifies for the 
unidirectional motion and weak forcing (of order O(as2)) ,  so that C, = -cQ,  U, = - Cz, 
which gives 

$ = kh:Cxxx> (57) 

and the corresponding cKdV equation becomes 

4.2. Variable triangular channel 
The triangular channel is bounded by two inclined plane walls situated at 

z+ (hm-yylyl) = 0 (Id hm/y = b ) ,  (59) 
8-2 
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where h, and y may vary with x and t (see figure 2 b ) .  The cross-flow potential 42 
satisfies the Poisson equation (39) and the following boundary conditions : 

- = s,t ( z  = 0, IYI < b ( x , t ) ) ,  
aZ 

= Dh,-lylDy ( z  = -h,+ylyl, IyI < b ( x , t ) ) .  aY aZ 
y-sgny-% +2 

The solution is given by (53), now for the triangular channel with 

a,(x,t) = g,, = -2D6-6ulZ+hD1ny, 

az(x ,  t )  = -&l,-aD1n y ,  

where the mean depth 6 of the triangular channel is 

This solution for q52 gives, by (38), 

where q = aDln y.  
$ = f i g z t t  + Q ( 6 2  - gP) UZZt - Q(P + p2) q,,, 

1c. = +(hi + f i b 3  szzz, 

(63 ) 

For the cKdV equation for right-going waves, the above $ reduces to 

(64) 

where h, = 6, (see (45)). The $(x, t )  given by (63) completes the gcB model and the 
@ of (64) affords the corresponding cKdV model for variable triangular channels. 

4.3. Variable parabolic chumel  

For a channel with a parabolic cross-section (see figure 2c) 

z = -h(x,y,t) = h, (;I -- I). (65) 

where h,(z, t )  and b(x ,  t )  are the maximum depth and the maximum half-width of the 
channel, q52 satisfies (39) and the following boundary conditions 

9 2  = Clt (2 = O ) ,  

-- w 2  - -Dh-*h, ( z  = -h(z,y,t)). 

aZ 

aZ aY 
The solution for q52 is again of the form (53), now with 

- . .  6 
a,(x, t )  = glt = -%Dh-hu,,+-p, 

2a 
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where ,u = aDln ( k / b z ) .  From this solution of q5z we obtain 

The leading-order term of $ reduces for the right-going waves to 

223 

(69) 

4.4. Variable semicircular channel 
For a channel with semicircular cross-section of variable radius R(x, t )  (see figure 2d  ), 
we employ the cylindrical coordinates (2, r ,  O),  with z = - r  cos 8, y = r sin t9 so that 
the boundary-value problem is prescribed as 

and the solvability condition gives 

fc !% ds = RRDR + Ulf;,, = - #Reulz.  
an 

The solution of this problem is 

$2 = 9,+9L 
$, = -ral(x, t )  cos8-bau,,, 

a,(z,t) = Clt = -~xDR-~RRul,, 

U 

A 
(be = u,(x, t )  +'R@, 

where @ and Y are the real and imaginary part of F and 

Here 4, stands for a particular solution, $c the complementary solution and a&, t )  
is an arbitrary function. From the above solution of q52, we deduce the result 

(71) 
k 2 -  
A2 3x2 

$(x,t) = - ( ~ - 1 6 l n 2 - ~ ~ ) ~ , ~ ~ + - - h ~ u , ~ ~ ,  

in which the higher-order terms are neglected, and R has been converted to h" = @R. 
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For the cKdV equation, we have 

+ ( x ,  t )  = - h: (-- 74 16 In 2 - 7 ~ ~ )  Q,, = 0.3756h: c,,,. 
I t 2  

For the general case of arbitrary cross-sectional shape, we may apply various 
methods available in potential theory, such as Green’s function, the conformal 
mapping technique, etc. to derive the gcB and the cKdV models for a given 
geometry. 

4.5. Rescaling of the wave models 
Our long wave models are written in terms of variables scaled horizontally by a 
typical wavelength h and vertically and transversally by the unperturbed mean 
water depth h,. This different scaling is essential in deriving the wave models by 
applying a perturbation technique. However, after the models are obtained with all 
terms in the equations properly balanced, it will be more convenient to rescale all 
quantities based on one single scale, namely the unperturbed mean water depth h,, 
since the typical wavelength h is an unknown itself (aside from being much greater 
than hc).  After this rescaling, the small parameter 8 no longer appears in the 
equations. 

5. Solitary and cnoidal waves in uniform channels 
Of particular interest is the special case of uniform channels, each with a specific 

yet arbitrary and fixed cross-sectional shape, for the uniformity of the medium must 
imply existence of waves of permanent form which merits study. For this case, with 
b, = const., h = const., the gcB equations become 

Q+[(h+C)UIa! =Bt ,  (73)  

(74) Ut + UU, + [, - iK2h2U,,t = -pax, 

where [ stands for [, u for a, h for lo = A,/2b = const., and B(x, t )  = A,/2b, with A ,  
being the so-called blockage ratio. In (74) ,  the dispersion term with uXxt is obtained 
from the original expression after using the first-order approximation 5, = - hu, in 
converting the third-order {-derivative terms without affecting the error estimate, so 
that for any uniform channel 

(75) 

where K~ is the only factor in (73)  and (74)  that depends explicitly on the channel 
cross-sectional shape. In particular, for the four specific channel shapes, with b, = h 
for the parabolic and triangular channels, we have the values of K shown in table 1. 
With K = 1 for the rectangular channel as the standard, the value of K appears to 
increase the further the channel shape departs from the rectangular form. 
Theoretically, the dispersion term + in (75)  may be replaced by $?h2cZzz or i ~ ~ h c ~ ~ ~ ,  
since they are all asymptotically equivalent to each other, but the form (75)  is 
preferred, its advantage in numerical stability being a primary reason. 

The corresponding cKdV equation is readily deduced from (51) as 

+=A 3K 2 h 2 U X Z t Y  

+ - g  1 + g x + , j l c c x + z K  31  1 2 2  h 6 , x  = - P x 7  
-hi 

where P = pa+B, which shows, for this theoretical model, the equivalence between 
the surface pressure and the submerged blockage as forcing agencies. 
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Uniform channel shape Shape factor K 

rectangular 1 
semicircular 1.06 
parabolic 1.16 
triangular 1.27 

TABLE 1. Uniform channel shapes and their corresponding K-values 

It is quite evident that the uniformity of the medium must imply existence of 
waves which remain permanent in form as they propagate, even though the water 
depth may vary across the channel, because the only parameters characterizing the 
channel geometry are the section-mean depth h and the channel shape factor K ,  both 
being constant for uniform channels. In fact, both the gcB and cKdV equations for 
a ‘K-shaped’ uniform channel (designated with a specific value of K )  are reduced to 
that for the rectangular channel under the similarity transformation : 

X = K X ’ ,  t=Kt’ ,  h = h ‘ ,  5=c, u = d ,  B=B’, p , = p : ,  (77) 

with the primed quantities being referred to the analogous rectangular channel. A 
similar transformation was given by Peregrine (1968) ; (77) is however simpler and 
more general with forcing terms. This result is obvious ; and we therefore have the 
following uniform-channel analogy theorem (proposed by Wu) : 

THEOREM. If the set u = d(x ,  t ;  h) ,  5 = k(x, t ; h)  is the solution to the gcB equations or 
the cKdV equations for a rectangular channel of depth h, then for a specific K-shaped 
unif:rm channel modelled by the same equations, the solution is u = d(x/K, t /K;h) ,  
5 = [ ( x / K ,  t / K ;  h) for the same mean water depth h, provided the forcing distribution, if 
any, and the initial values also satisfy the relations (77) .  

This theorem is obvious in consequence of (77) .  The corresponding forcing 
distributions and initial values so defined (by transformation (77))  for the K-shaped 
and the corresponding channels will be said to be analogous to each other. This 
uniform-channel analogy means that two analogous forcing distributions moving 
with the same velocity U will produce waves of equal amplitude travelling with the 
same wave velocity c ,  since the arguments of the phase functions of the two sets of 
waves will be related by 

k(x-ct)  = Kk(x’-ct’) = k’(x’-ct’), k‘ = ~ k ,  (78) 

so that the wavenumber will be the only wave property that will be varied under the 
analogy, being converted from k for the K-shaped channel to k‘ = Kk for the 
analogous rectangular channel, or vice versa. Whence for a channel with K > 1 ,  the 
waves are more gently sloped and more spread out than the analogous waves in the 
rectangular channel. With this analogy between channels, we therefore need only 
consider the rectangular channel, of which the theory is classical. 

Without forcing, the KdV equation admits the known solitary wave 

[(d, t ’ ;  k’) = asech2 [k’(x’-ct’)], 

k‘ = ($):, c = l+& (a = a / h ) ,  

where a is the wave amplitude and the water depth h ( =  1) is recovered for 
completeness in the expression for a. For a K-shaped uniform channel, with the same 
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mean depth h (= 1), solitary waves exist, and, according to  the above theorem, are 
the & , t ; k )  as given by (79a), i.e. 

C(z, t ;  E )  = asech2 [ k ( z - c t ) ] ,  

provided k = ( $ Z ) ' K - ~ ,  c = l++a (a = a/h) .  (80b) 

5 = acnlks, s = ( 2 - c t ) ,  (81 4 

( 8 0 4  

Similarly, a K-shaped channel can support cnoidal waves given by 

where the modulus of the Jacobian elliptic function cn (ks  I m) is 

m = (./PI', 

and 
4 ~ h  

A = Kh' = ---K(m) 
(38P 

is the wavelength of 5, K(m) being the yomplete elliptic integral of the first kind. The 
above equation for A determines p = &h/A, a). Therefore, for equal wave height a 
and dispersion parameter p, the cnoidal waves in a K-shaped channel with a length 
K times that in the analogous rectangular channel, and (81 b )  shows that the wave 
slope is k/k' = 1 / ~  times that in the rectangular channel. For K = 1, this reduces to 
the classical result. 

For the Boussinesq equations, there can be several first-approximation wave 
solutions, all belonging to the Boussinesq family ; they arise from having the third- 
order derivative term in the equations modified by incorporating various first-order 
relations. In order to make comparisons with the KdV model, we proceed to find 
stationary solutions to the gcB equations (73) and (74) without forcing. For 
stationary waves, we seek solutions of the form 

6 = C(8) ,  U / C  = W ( S ) ,  8 = ( % - C t ) / K .  (82) 

- C + ( l + C ) v  = 0, (83) 

Substituting (82) into (73) and (74), and integrating the equations once yields 

C"+#u"V+-&Cl 1 = 0, 

where the prime denotes d/ds, and C,  is an integration constant. Using (83), we may 
expand C; in (84) as 

which is consistent with the error estimate for (84) so, with a further integration, 

c =  v/(i-w) = v+w2+0(tL3),  (85) 

c Q ( $ y  = -(2+c2)w3+3(c2-l)~2+6c2C1w+C2 = c2Q(w;c),  

where C, is an integration constant. For bounded solutions, the zeros of G must be 
real, and bounded solutions must oscillate periodically between two of the zeros of 
Q where Q is positive. 

For solitary waves, (86) has, with C,  = C,  = 0, the integral 

u / c  = w = a sech2 [ k ( x -  c ~ ) / K ] ,  (87 a) 
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where c2 = 1 + ) ( 2 + c 2 ) a  x l+a ,  

k2 = t( 1 + 2/c2) tc x @. 

Accordingly, we have for the wave elevation, to first order by the gcB model, 

C = v/ ( l  -v) x asech2 [k(x-ct ) /~] .  (88) 

This solution of C for a K-shaped channel modelled by the gcB equations reduces with 
K +  1 to the solitary wave of Boussinesq for rectangular channels, which we will 
designate gB(1). 

For waves of finite length, C, and C, in (86) can be chosen such that 

This equation has the integral 
v = acn2k(x-cct), 

where k = [(2 + c') /~]$/BKC, (gob) 

A = ( 2 / k ) ~ ( m ) ,  m = (tc/,~)i, ( 9 0 4  

which is a cnoidal wave in the K-shaped channel, with wave height a, velocity c, and 
length 

K(m) being the complete elliptic integral of the first kind, and m is also the argument 
of the elliptic function. 

Alternatively, a solitary wave solution of the generalized Boussinesq equations can 
be obtained by integrating (84) after substituting 

V c=-,  1 - v  
by (83), for in (84), giving 

dv/de = & [G(v; c)]i, ( 9 2 4  

with G(v;c) = -va+3v2+(6/c2)[~+ln(1-v)]+C1v+C2, (92 b )  
C,  being an integration constant. For solitary waves, v vanishes exponentially as 
s + 00, hence C, = C,  = 0 so that G + 0 like v2 as v + 0. In addition, the symmetry 
of a solitary wave implies 

dv/ds = 0 at s = 0, 

corresponding to which G(v;c) has a simple zero at  v = v,, say, so that Q(v,;c) = 0 
determines c.  Therefore, by (92 b), v, satisfies 

c2 = - ~ [ v + ~ I ( ~ - v ) ] / v ~ ( ~ - v ) ,  (93) 
which gives directly c = c(v,). Thus we obtain the solitary wave solution of the gcB 
model for v(s) by quadrature, 

And accordingly we have the free-surface elevation c by (91),  which we designate by 

A comparison between the solitary wave solutions given by the gcB and the cKdV 
models shows that cKdV- and gB(1)-solitary waves have the same profile based on 

gB* 
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FIGURE 3. Profiles of solitary wave in a uniform channel of shape factor K (equation (77)) in the 
wave frame: (a) a = 0.350, ( b )  a = 0.493, (c) a = 0.610: m, experiment, Daily & Stephan (1952), for 
a rectangular channel; -, gB; ---, KdV, gB(1). 

the same amplitude, while the gB-solitary wave has a profile which is practically the 
same as the other two for small amplitudes, a < 0.3, and shows for a = 0.5 and 0.6 
only a slight difference in having a little higher foot-hills than the cKdV soliton 
profile. These results are shown in figure 3(a-c) for a = 0.350, 0.493 and 0.61, 
together with the experimental results obtained by Daily & Stephan (1952) for 
rectangular channels, i.e. with K = 1. In  their comparative studies, Daily & Stephan 
also included various other theoretical results. Of these theories, Boussinesq's profile 
(identical with the KdV profile) of the solitary wave is found to give the most 
consistent agreement with experiments. In the range 0.12 < a < 0.61 covered, the 
best agreement is reached at a = 0.23 and shows an almost complete coincidence 
between theory and experiment throughout the wave stretch. A t  higher a, the 
theoretical profile exhibits a very slightly broader crest and narrower base than what 
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was measured, and with a slight opposite trend a t  lower a. The new profile of gB 
seems to improve slightly the agreement near the base, though not by a sufficient 
margin. 

The theoretical results of wave velocities given by our two channel flow models are 
shown in figure 4 together with the experimental results of Daily & Stephan (1952), 
who find that the wave velocity is adequately prescribed for all practical purposes by 
the relation c = (1 +a); first derived empirically by Russell and theoretically by 
Boussinesq and Rayleigh. This theoretical value is about 2.5% greater than the 
experimental data at a = 0.6 and with percentile difference increasing at  lower a. The 
velocity given by the cKdV model, c = 1 +&, gives a greater departure from the 
experimental data. In contrast, the wave velocity determined numerically by the gB 
solution (94) exhibits the best agreement, especially for higher a. However, we 
cannot find concrete reasons for explaining this improvement. 

In  the comparative study made by Daily & Stephan, the effects of viscous 
dissipation were included by using their empirical formula 

where a = a(z)  is the wave amplitude at z in water of depth h, a,, = a(O), b is the 
channel half-width, and v the kinematic viscosity of water. This gives slightly lower 
attenuation rates than Keulegan’s (1948) theory, and also Miles’s (1976) theory. 
However, we note that any attenuation of a profile which is initially a sech2 kx must 
induce departure from the purely sech2 (kz) profile, because the excess mass, being 
conserved on physical grounds, is but a one-parameter family in a. In the literature, 
there do not seem to be any discussions of the effect due to changes from the 
sech2 (kz) profile on possible modifications of the dissipation rates of wave profiles. 
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FIQURE 5. A three-dimensional solitary wave based on the cKdV model, with section-mean 
amplitude of a = 0.3, in a uniform triangular channel of half-vertex angle of 45' : (a) the perspective 
wave elevation, ( b )  the elevation contour plot ; A[ = 0.025 between consecutive curves. 

For periodic waves of finite length in a K-shaped channel, both models admit 
cnoidal waves, though the respective wave profiles have some differences based on 
equal (a,/3) as both wavelength A and maximum wave slope ka have different 
functional dependence on (a,/?), as does the wave velocity c on (a,/?) for the two 
models. However, we shall not pursue this comparison further here. 

Another interesting feature of a solitary wave travelling in a non-rectangular 
uniform channel is that, unlike in the rectangular case for which the solitary wave 
maintains a profile uniformly across the channel, the wave amplitude in a non- 
rectangular channel varies across the width. This variation can be predicted by our 
two wave models. Figures 5 ( a )  and 5(b) show the three-dimensional wave patterns 
of a solitary wave travelling in a triangular channel of half-vertex angle of 45O. The 
results are computed by first solving the cKdV equation to obtain the section-mean 
solitary wave solution (79) and (80) with K~ = 2 (h,  = 1, b = 2), and then substituting 
these first-order results into perturbation expansion (33) with cross-flow solutions 
(53), (60) and (61) to recover the three-dimensional wave field to the second order. 
By applying the Bernoulli equation at the free surface and using the first-order 
approximations 6 = cu and a, = -c  a,, we have for the present case 
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C(x,y,t) = -q5t-&b:+O(a2s2) (2 = O ) ,  

= ~ - ~ ~ z z y 2 + a ~ ( x , t ) + 0 ( a 2 s 2 )  ( - b  < y < b,b = 2 ) ,  (96a)  

where 
the surface mean of (96a)  to yield for 6 = 2 

represents the section-mean solution and a,*(., t )  is determined upon taking 

(96b) 

The results show that the wave crest varies across the channel in the form of a 
sideways saddle with its lowest elevation and widest spread occurring at the 
centreplane. Its profile along the crestline is similar to the curve given by Peregrine 
(1968). 

- 
u,*(., t )  = gz, + o(a2). 

6. Discussion and conclusion 
We have derived two types of theoretical model - the generalized channel 

Boussinesq model (gcB, (43)-(44)) and the channel KdV model (cKdV, (51)) - for 
describing the generation and propagation of nonlinear long waves in a channel of 
variable cross-section which may vary both in space and time in addition to possibly 
being subject to external forcing excitations. They are derived from the inviscid 
Euler equations by using perturbation technique for quasi-one-dimensional long 
waves on a shallow layer of water. 

Based on the underlying assumptions, we infer that the gcB model has a broader 
range of general validity than the cKdV model. The magnitude of the perturbed 
quantities can be of O(a) for the gcB model whereas, for the cKdV model, the 
magnitude of the external forcing functions are required to be of the next higher 
order, i.e. of O(a2) due to the limitation prevailing at  resonance. Further, the gcB 
model allows bidirectional waves and is valid for a considerably larger range of 
Froude number. It permits the channel cross-sections to have more arbitrary 
variations in space and time. The cKdV model is best suitable for studying 
unidirectional wave motions with near resonant external forcing as originally 
prescribed. Under that premise, the cKdV model has the advantage over the gcB 
model that solutions are simpler to obtain and some theoretical points are more 
directly seen such as the net effect of external forcing functions or the mass and 
energy conservation laws. 

The analysis and results presented in the previous section show that the specific 
cross-sectional configuration only affects the coefficients of the dispersion terms in 
the two models. In this respect, the cKdV model gives a slightly clearer picture on 
this particular effect, since in this case, a change in the cross-sectional shape only 
changes the coefficient of the single dispersion term C,,, while the other terms are 
unaffected. Quantitatively, we may list the dispersion terms in the cKdV equations 
for uniform channels with rectangular, semicircular, parabolic and triangular cross- 
sections (with h, = b for the last two cases) as given in table 1 .  From these results we 
see that the mean slope of the channel sidewalls plays an explicit role in producing 
the dispersive effects : the greater the departure of the channel sectional shape from 
rectangular, the greater the dispersive effect. For uniform channels, we also 
enunciated a uniform-channel analogy theorem, which shows the analogy of wave 
solutions among different channel configurations. 

Solitary waves can be generated by an external near-resonant forcing, and the 
cKdV model shows that a moving pressure distribution at the free surface and a 
floating or submerged moving object, like a ship, play an exactly equivalent role as 
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forcing functions provided the magnitude of external forcing is small, of O(a2).  When 
external forcing becomes stronger in order of magnitude, the validity of the cKdV 
model becomes questionable, yet the gcB model is seen still capable of distinguishing 
between a free-surface pressure distribution and a submerged moving object as 
external forcing functions. For a semi-submerged moving object, the cKdV equation 
(51) shows that the effective strength of forcing is directly related to the blockage 
ratio of the disturbance’s frontal projected area to the cross-sectional area, while the 
specific shape and the position in the (y, 2)-plane of the disturbance have little effect 
on the long waves so generated, other qualifying conditions being equal. This 
important blockage-ratio concept will be further discussed in a subsequent paper 
along with numerical and experimental results. 

As presented above, both the gcB and the cKdV models are written in terms of 
section-mean quantities. Since a typical wavelength is much greater than the 
characteristic length in the cross- flow plane, these section-mean equations provide a 
good representation of the dominant features of the wave field. I n  addition, the 
detailed three-dimensional wave features in the cross-flow plane can nevertheless be 
recovered to leading order once we have solved the gcB or the cKdV equations for 
the section-mean motion with given initial and boundary conditions, as has been 
demonstrated above by (96) and shown in figure 5. 

We have applied our models to study the propagation of long waves travelling in 
a variable channel to simulate ocean waves running up into shallow water with 
variable depth and width. The conservation properties and also the validity of the 
two models will be further examined when our models are applied to study these 
more general problems. The theoretical, numerical and experimental results for these 
problems will be presented in a subsequent paper. 
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